5 resultados para Glutamate

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uric acid is a major inducer of inflammation in renal interstitium and may play a role in the progression of renal damage in hyperuricemic subjects with primary nephropathies, renal vascular disease, and essential hypertension. At the same time, UA also acts as a water-soluble scavenger of reactive oxygen species. We evaluated the cellular effects of UA on cultured HMC as a potential interstitial target for abnormally elevated levels in acute and chronic renal disease. Intracellular free Ca2+ ([Ca2+]i) was monitored by microfluorometry of fura 2-loaded cells, while oxidation of intracellularly trapped non-fluorescent 2’,7’-dichlorofluorescein diacetate (DCFHDA, 20 uM) was employed to assess the generation of reactive oxygen species during 12-hr incubations with various concentrations of UA or monosodium urate. Fluorescent metabolites of DCFH-DA in the culture media of HMC were detected at 485/530 nm excitation/emission wavelengths, respectively. UA dose-dependently lowered resting [Ca2+]i (from 102±9 nM to 95±3, 57±2, 48±6 nM at 1-100 uM UA, respectively, p <0.05), leaving responses to vasoconstrictors such as angiotensin II unaffected. The effect was not due to Ca2+/H+ exchange upon acidification of the bathing media, as acetate, glutamate, lactate and other organic acids rather increased [Ca2+]i (to max. levels of 497±42 nM with 0.1 mM acetate). The decrease of [Ca2+]i was abolished by raising extracellular Ca2+ and not due to effects on Ca2+ channels or activation of Ca2+-ATPases, since unaffected by thapsigargin. The process rather appeared sensitive to removal of extracellular Na+ in combination with blockers of Na+/Ca2+ exchange, such as 2’,4’-dichlorobenzamil, pointing to a countertransport mechanism. UA dose-dependently prompted the extracellular release of oxidised DCFH (control 37±2 relative fluorescence units (RFU)/ml, 0.1uM 47±2, 1 uM 48±2, 10 uM 51±4, 0.1 mM 53±4; positive control, 10 uM sodium nitroprusside 92±5 RFU/ml, p<0.01). In summary, UA interferes with Ca2+ transport in cultured HMC, triggering oxidative stress which may initiate a sequence of events leading to interstitial injury and possibly amplifying renal vascular damage and/or the progression of chronic disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was performed to validate a spatial working memory task using pharmacological manipulations. The water escape T-maze, which combines the advantages of the Morris water maze and the T-maze while minimizes the disadvantages, was used. Scopolamine, a drug that affects cognitive function in spatial working memory tasks, significantly decreased the rat performance in the present delayed alternation task. Since glutamate neurotransmission plays an important role in the maintaining of working memory, we evaluated the effect of ionotropic and metabotropic glutamatergic receptors antagonists, administered alone or in combination, on rat behaviour. As the acquisition and performance of memory tasks has been linked to the expression of the immediately early gene cFos, a marker of neuronal activation, we also investigated the neurochemical correlates of the water escape T-maze after pharmacological treatment with glutamatergic antagonists, in various brain areas. Moreover, we focused our attention on the involvement of perirhinal cortex glutamatergic neurotransmission in the acquisition and/or consolidation of this particular task. The perirhinal cortex has strong and reciprocal connections with both specific cortical sensory areas and some memory-related structures, including the hippocampal formation and amygdala. For its peculiar position, perirhinal cortex has been recently regarded as a key region in working memory processes, in particular in providing temporary maintenance of information. The effect of perirhinal cortex lesions with ibotenic acid on the acquisition and consolidation of the water escape T-maze task was evaluated. In conclusion, our data suggest that the water escape T-maze could be considered a valid, simple and quite fast method to assess spatial working memory, sensible to pharmacological manipulations. Following execution of the task, we observed cFos expression in several brain regions. Furthermore, in accordance to literature, our results suggest that glutamatergic neurotransmission plays an important role in the acquisition and consolidation of working memory processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present study we analyzed new neuroprotective therapeutical strategies in PD (Parkinson’s disease) and AD (Alzheimer’s disease). Current therapeutic strategies for treating PD and AD offer mainly transient symptomatic relief but it is still impossible to block the loss of neuron and then the progression of PD and AD. There is considerable consensus that the increased production and/or aggregation of α- synuclein (α-syn) and β-amyloid peptide (Aβ), plays a central role in the pathogenesis of PD, related synucleinopathies and AD. Therefore, we identified antiamyloidogenic compounds and we tested their effect as neuroprotective drug-like molecules against α-syn and β-amyloid cytotoxicity in PC12. Herein, we show that two nitro-catechol compounds (entacapone and tolcapone) and 5 cathecol-containing compounds (dopamine, pyrogallol, gallic acid, caffeic acid and quercetin) with antioxidant and anti-inflammatory properties, are potent inhibitors of α-syn and β-amyloid oligomerization and fibrillization. Subsequently, we show that the inhibition of α-syn and β-amyloid oligomerization and fibrillization is correlated with the neuroprotection of these compounds against the α-syn and β-amyloid-induced cytotoxicity in PC12. Finally, we focused on the study of the neuroprotective role of microglia and on the possibility that the neuroprotection properties of these cells could be use as therapeutical strategy in PD and AD. Here, we have used an in vitro model to demonstrate neuroprotection of a 48 h-microglial conditioned medium (MCM) towards cerebellar granule neurons (CGNs) challenged with the neurotoxin 6-hydroxydopamine (6-OHDA), which induces a Parkinson-like neurodegeneration, with Aβ42, which induces a Alzheimer-like neurodegeneration, and glutamate, involved in the major neurodegenerative diseases. We show that MCM nearly completely protects CGNs from 6-OHDA neurotoxicity, partially from glutamate excitotoxicity but not from Aβ42 toxin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have modeled various soft-matter systems with molecular dynamics (MD) simulations. The first topic concerns liquid crystal (LC) biaxial nematic (Nb) phases, that can be possibly used in fast displays. We have investigated the phase organization of biaxial Gay-Berne (GB) mesogens, considering the effects of the orientation, strength and position of a molecular dipole. We have observed that for systems with a central dipole, nematic biaxial phases disappear when increasing dipole strength, while for systems characterized by an offset dipole, the Nb phase is stabilized at very low temperatures. In a second project, in view of their increasing importance as nanomaterials in LC phases, we are developing a DNA coarse-grained (CG) model, in which sugar and phosphate groups are represented with Lennard-Jones spheres, while bases with GB ellipsoids. We have obtained shape, position and orientation parameters for each bead, to best reproduce the atomistic structure of a B-DNA helix. Starting from atomistic simulations results, we have completed a first parametrization of the force field terms, accounting for bonded (bonds, angles and dihedrals) and non-bonded interactions (H-bond and stacking). We are currently validating the model, by investigating stability and melting temperature of various sequences. Finally, in a third project, we aim to explain the mechanism of enantiomeric discrimination due to the presence of a chiral helix of poly(gamma-benzyl L-glutamate) (PBLG), in solution of dimethylformamide (DMF), interacting with chiral or pro-chiral molecules (in our case heptyl butyrate, HEP), after tuning properly an atomistic force field (AMBER). We have observed that DMF and HEP molecules solvate uniformly the PBLG helix, but the pro-chiral solute is on average found closer to the helix with respect to the DMF. The solvent presents a faster isotropic diffusion, twice as HEP, also indicating a stronger interaction of the solute with the helix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il nucleo accumbens (NAc), il maggior componente del sistema mesocorticolimbico, è coinvolto nella mediazione delle proprietà di rinforzo e nella dipendenza da diverse sostanze d’abuso. Le sinapsi glutammatergiche del NAc possono esprimere plasticità, tra cui una forma di depressione a lungo termine (LTD) dipendente dagli endocannabinoidi (eCB). Recenti studi hanno dimostrato un’interazione tra le vie di segnalazione del sistema eCB e quelle di altri sistemi recettoriali, compreso quello serotoninergico (5-HT); la vasta colocalizzazione di recettori serotoninergici e CB1 nel NAc suggerisce la possibilità di un’interazione tra questi due sistemi. In questo studio abbiamo riscontrato che una stimolazione a 4 Hz per 20 minuti (LFS-4Hz) delle afferenze glutammatergiche in fettine cerebrali di ratto, induce una nuova forma di eCB-LTD nel core del NAc, che richiede l’attivazione dei recettori CB1 e 5-HT2 e l’apertura dei canali del Ca2+ voltaggio-dipendenti di tipo L. Inoltre abbiamo valutato che l’applicazione esogena di 5-HT (5 M, 20 min) induce una LTD analoga (5-HT-LTD) a livello delle stesse sinapsi, che richiede l’attivazione dei medesimi recettori e l’apertura degli stessi canali del Ca2+; LFS-4Hz-LTD e 5-HT-LTD sono reciprocamente saturanti. Questi risultati suggeriscono che la LFS-4Hz induce il rilascio di 5-HT, che si lega ai recettori 5-HT2 a livello postsinaptico incrementando l’influsso di Ca2+ attraverso i canali voltaggio-dipendenti di tipo L e la produzione e il rilascio di 2-arachidonoilglicerolo; l’eCB viaggia a ritroso e si lega al recettore CB1 a livello presinaptico, causando una diminuzione duratura del rilascio di glutammato, che risulta in una LTD. Queste osservazioni possono essere utili per comprendere i meccanismi neurofisiologici che sono alla base della dipendenza da sostanze d’abuso, della depressione maggiore e di altre malattie psichiatriche caratterizzate dalla disfunzione della neurotrasmissione di 5-HT nel NAc.